SENIOR CAPSTONE/ SENIOR DESIGN EXPERIENCE

Zero-Waste Apple Cider

Gabby Surdyka¹, Rachael Paston¹, Anna Meunier¹

¹Biological Engineering

Agricultural and Biological Engineering

Objective

2025

To create a zero-waste process that utilizes apple pomace waste from hard apple cider to create fruit leather.

Background

Market Analysis

- USD 14.67 billion in 2022 and is expected to grow at a CAGR of 7.2% (Grand View Research, 2023).
- In 2024, canned cider sales grew by 19%.
 (Hoptown Handles, 2024).

Target Consumer (2)

- Young Adults looking for healthy portable snacks.
- Health-conscious Adults looking to try a new craft beverage made sustainably.

Competitors

- That's It, Annie's Fruit Snacks, Stretch Island Fruit Co.
- Angry Orchard (owned by Boston Beer Company), Bold Rock, Heineken.

* Environmental Impacts

- Globally, 40-50% of fruits and vegetables are wasted during production (Despoudi et al., 2021).
- Pomace makes up 10-35% of an apple and is usually discarded (Sostaric et al., 2023).
- Biomass contributes to 20-50% of global greenhouse emissions (Sial et al., 2024).

	Fermentation	Dehydration	Pasteurization
Chosen type	Stainless Steel	Tray	LTLT
Alternative type	Barrells	Microwave	HTST
Optimization parameter	ABV %	Temperature	Temperature and Time
Optimized value	22°C	78°C	71°C
	\$35,000	\$91,941	6.17 mins

Economic Analysis

Total Capital Investment	\$8,294,470	
Total product cost	\$2.08/kg of Cider	
	\$2.37/kg of Fruit Leather	
Product Produced	94,000 L of Cider/ Year	
	240,000 Kg of Leather / Year	
DCFR	25.6%	

d Plant Design

- Waste water treatment
- Closed circuit water cycle in pasteurizer
- Plant layout optimization
- Shorten flow distances in piping

Future Work

- Improve texture and color of fruit leather
- Test alternative uses of apple pomace
- Add new flavor profiles to Cider

* Experimental Design

Cider Production

- 1. Process and juice apples: Wash, cut, remove seeds and stems. Place apple slices in juicer.
- 2. Activate and add yeast: Heat 0.26g yeast and 2.6 mL of water at 35-37°C for 20 min.
- **3. Anaerobic Fermentation**: Ferment at room temp for 2 weeks.
- 4. Filtration: Filter through a cheese cloth.
- **5. Pasteurize**: Boil in water until cider is at 140°C for one min.

Experimentation

Apple variety (**Honeycrisp**, Granny Smith, Fuji)
Fermentation length (4 weeks, 3 weeks, **2 weeks**)

Fruit Leather Production

- 1. Process and juice apples: Wash, cut, remove seeds and stems.
 Place apple slices in juicer
- **2. Collect pomace**: Remove leftover apple pomace from juicing.
- 3. Blend pomace with additives:
 Blend apple pomace with
 cinnamon until smooth paste is
 formed.
- **4. Dehydrate**: In oven at 77°C for 12 hours

Experimentation

Dehydrator type (**Oven**, tray dehydrator)

*Dehydration time and temperature varied with type

Instructor: Dr. Martin Okos Advisor: Dan Hauersperger Acknowledgements: Purdue Agricultural and Biological Engineering Department